Cambridge IGCSE[™](9–1) | CANDIDATE
NAME | | | | | | |-------------------|--|--|---------------------|--|--| | CENTRE
NUMBER | | | CANDIDATE
NUMBER | | | # 954035826 ## **CO-ORDINATED SCIENCES** 0973/41 Paper 4 Theory (Extended) May/June 2024 2 hours You must answer on the question paper. No additional materials are needed. ### **INSTRUCTIONS** - Answer all questions. - Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs. - Write your name, centre number and candidate number in the boxes at the top of the page. - Write your answer to each question in the space provided. - Do not use an erasable pen or correction fluid. - Do not write on any bar codes. - You may use a calculator. - You should show all your working and use appropriate units. # **INFORMATION** - The total mark for this paper is 120. - The number of marks for each question or part question is shown in brackets []. - The Periodic Table is printed in the question paper. 1 (a) Fig. 1.1 is a diagram of the female reproductive system in humans. Fig. 1.1 State which letter in Fig. 1.1 identifies where: | meiosis occurs | | |----------------------|--| | fertilisation occurs | | | implantation occurs. | | [3] **(b)** Fig. 1.2 is a diagram showing some of the processes involved in the formation of a human embryo. Fig. 1.2 | | (ii) | State the sex chromosomes in human females. | | | |-----|-------|--|----------|----------| | | | | | [1] | | | (iii) | State the name of the adaptive feature of egg cells that changes after prevent entry of more than one sperm. | fertilis | ation to | | | | | | [1] | | (c) | Sta | te one function of the amniotic fluid. | | | | | | | | | | (d) | Tick | x (✓) all the boxes that show correct statements about the placenta. | | [1] | | | Ca | arbon dioxide diffuses from the mother's blood in the placenta to the fetus. | | | | | Th | e blood of the fetus and the blood of the mother mix in the placenta. | | | | | Th | e mother provides the fetus with excretory products from the placenta. | | | | | Th | e placenta provides a barrier to toxins. | | | | | Th | e umbilical cord connects the fetus to the placenta. | | | | | | | | [2] | [Total: 10] 2 | (a) | Ma | gnesium sulfate contains magnesium ions, Mg ²⁺ , and sulfate ions, SO ₄ ²⁻ . | |-----|------|---| | | (i) | Determine the formula of magnesium sulfate. | | | | | | | | | | | | formula =[1] | | | (ii) | Explain why solid magnesium sulfate cannot conduct electricity but solid magnesium can conduct electricity. | | | | | | | | | | | | | | | | rol | | | | [3] | | (b) | Mag | gnesium reacts with hydrochloric acid, HC <i>l</i> . | | | Mag | gnesium chloride, $\mathrm{MgC}\mathit{l}_{2}$, and hydrogen gas are made. | | | (i) | Describe the test for hydrogen gas and the observation for a positive result. | | | | test | | | | observation[2] | | | (ii) | Calculate the mass of magnesium chloride made when 1.2g of magnesium reacts with excess hydrochloric acid. | | | | $Mg + 2HCl \! \to MgCl_2 + H_2$ | | | | [A _r : Cl, 35.5; H, 1; Mg, 24] | | | | | | | | | | | | | | | | | (iii) The ionic equation for this reaction is shown. | $\rm Mg + 2H^+ \rightarrow Mg^{2+} + H_2$ | | |--|-----| | Explain why this reaction is described as a redox reaction. | | | | | | | | | | [2] | [Total: 10] **3** Fig. 3.1 shows apparatus called a ripple tank. This is used to investigate water waves. An electric motor causes the board to vibrate. At a constant speed of rotation, the motor produces waves at a constant rate. Fig. 3.1 (a) The electric motor causes the vibrating board to move up and down at a known frequency. This produces water waves with the same frequency. | (i) | State the meaning of the term frequency. | | | | | | | | |-----|--|--|--|--|--|--|--|--| [1 | | | | | | | | (ii) The ripple tank produces waves with a frequency of 5.0 Hz which travel at a speed of 0.20 m/s. Calculate the wavelength of the water waves. wavelength = m [2] | | (iii) | Describe how the diffraction of water waves is demonstrated using a ripple tank. | |-----|-------|---| | | | Include a description of what is observed. | | | | You may draw a diagram to help with your answer. | [2] | | (b) | The | ripple tank uses a simple d.c. motor. | | | Con | nplete the sentences to explain how the motor rotates. | | | The | current-carrying coil experiences a force because it is in a field. | | | The | force on one side of the coil is upwards and the force on the other side of the coil is | | | | , causing a turning effect. | | (c) | Tho | ripple tank uses a filament lamp during the demonstration. | | (6) | | | | | (i) | Draw the circuit symbol for a filament lamp. | | | | | | | /ii\ | [1] The notantial difference across the filament lamp is 121/ | | | (ii) | The potential difference across the filament lamp is 12V. | | | | During the demonstration, the filament lamp uses 24 000 J of electrical energy. | | | | Calculate how much charge passes through the filament lamp during the demonstration. | | | | State the unit of your answer. | | | | | | | | | [Total: 12] [Turn over charge = unit [4] **4** (a) A student investigates the effect of temperature on the rate of transpiration. Transpiration is estimated by recording the loss in mass. The student keeps one plant at 20 °C and one plant at 40 °C. The student records the mass of each plant every day for 5 days. Fig. 4.1 shows the apparatus the student uses. Fig. 4.1 Fig. 4.2 is a graph of the results. Fig. 4.2 0973/41/M/J/24 | | (i) | Complete the sentences to describe and explain the results shown in Fig. 4.2. | | |-----|-------|---|--------| | | | The mass of the plant kept at 40 °C decreased in mass by | | | | | g between day 1 and day 5. | | | | | As temperature increases, the water molecules gain more | | | | | energy. | | | | | This increases the rate of evaporation from the surfaces of the | | | | | cells. | | | | | There is also an increase in the rate of diffusion of | | | | | through the into the atmosphere. | [5] | | | (ii) | State how an increase in humidity would affect the results shown in Fig. 4.2. | [5] | | | | | | | (b) | Wat | er is transported to the leaves by xylem. | | | | (i) | State how the water molecules are held together in the xylem. | | | | | | [1] | | | (ii) | State one other function of xylem, apart from transport. | | | | | | [1] | | | (iii) | State the name of one other transport tissue in plants. | | | | | | [1] | | | | [Tot | al: 9] | **5** (a) Fig. 5.1 shows part of the structure of lithium chloride. Fig. 5.1 | (i | i) | Deduce | the | formula | of | lithium | chloride | |----|----|--------|-----|---------|----|---------|----------| | | | | | | | | | | | formula =[1] | |------|--| | (ii) | Lithium chloride has a high melting point of 605 °C. | | | Explain why lithium chloride has a high melting point. | | | | | | | | | [2] | | | [2] | (b) Fig. 5.2 shows part of the structure of graphite. Fig. 5.2 | Describe the structure of graphite. | |-------------------------------------| | | | | | [2] | © UCLES 2024 0973/41/M/J/24 (i) | | | Table 5.1 | |-----|------|--| | | (i) | Tick (\checkmark) the row in Table 5.1 which shows the melting point and boiling point of mercury. | | (c) | Mei | cury is a liquid at room temperature, 25 °C. | | | | [2] | | | | | | | | | | | | Use ideas about structure and bonding. | | | (ii) | Explain why graphite is used as a lubricant. | Table 5.1 | melting point/°C | boiling point/°C | (✓) | |------------------|------------------|-------------| | – 357 | -39 | | | – 57 | 9 | | | -39 | 357 | | | 39 | 357 | | [1] (ii) Mercury has a proton number (atomic number) of 80 and a nucleon number (mass number) of 201. Complete Table 5.2 for an atom of mercury. Table 5.2 | protons | 80 | |-----------|----| | neutrons | | | electrons | | [2] [Total: 10] **6** Fig. 6.1 shows a canister filled with liquid chlorine under pressure. When the chlorine is released from the canister, it turns into a gas. Fig. 6.1 (a) (i) Describe the arrangement and separation of molecules in a liquid and molecules in a gas. # | (b) A sample of chlorine gas contains two isotopes, chlorine-35 and cl | cniorine-37 | |--|-------------| |--|-------------| | (1) | Describe one similarity and one difference in the composition of a nucleus of chlorine-35 | |-----|---| | | and a nucleus of chlorine-37. | | similarity |
 |
 | |------------|------|------| | difference | | | | | | [2] | (ii) Another isotope of chlorine is chlorine-36 which is unstable. Fig. 6.2 shows how the number of undecayed nuclei in a sample changes over time. Fig. 6.2 Use Fig. 6.2 to determine the half-life of chlorine-36. half-life = thousand years [1] (iii) Chlorine-36 decays to produce an isotope of argon. Use the correct nuclide notation to complete the decay equation. $$^{36}_{17}$$ C $l \rightarrow ^{\cdots}_{18}$ Ar + $^{\cdots}_{\cdots}$ [2] | (c) The ca | inister holds | : 0.020 m ³ | of liquid | chlorine | when | it is | s full | |------------|---------------|------------------------|-----------|----------|------|-------|--------| |------------|---------------|------------------------|-----------|----------|------|-------|--------| When the canister is full of liquid chlorine, the total mass of the canister and the liquid chlorine is 13 kg. The density of liquid chlorine is 570 kg/m³. Calculate the mass of the canister when it is empty. mass of empty canister =kg [3] [Total: 11] # **BLANK PAGE** **7 (a)** Fig. 7.1 is a diagram showing the difference in the cells lining the gas exchange system of a person that smokes tobacco and a person that does not smoke tobacco. # cells in the bronchi of a person that smokes tobacco cells in the bronchi of a person that does not smoke tobacco Fig. 7.1 | (1) | Use the information in Fig. 7.1 to explain why tobacco smokers are more likely to get lung infections. | |------|--| (::\ | Identify the many of the cell lebelled V in Fig. 7.4 | | (ii) | Identify the name of the cell labelled X in Fig. 7.1. | | | [1] | | (b) | Sm | oking causes cancer. | |-----|-------|--| | | (i) | State the names of two other diseases caused by smoking. | | | | 1 | | | | 2[2 | | | (ii) | State the component of tobacco smoke that causes cancer. | | | (iii) | Cancer is the result of a mutation in cells. | | | | Define the term mutation. | | | | | | (c) | Alve | eoli are the gas exchange surface in humans. | | | Gas | ses are exchanged by the process of diffusion. | | | Exp | lain the advantage, in terms of diffusion, of the alveoli being thin and well ventilated. | | | thin | | | | | | | | wel | ventilated | | | | [2 | | (d) | | te the names of two parts of the gas exchange system, that air passes through, between mouth and the alveoli. | | | | and[2 | | | | [Total: 12 | 8 (a) A student investigates the reactivity of four metals W, X, Y and Z. They react the same sized piece of each metal with excess dilute hydrochloric acid. Table 8.1 shows their observations. Table 8.1 | metal | observations | |-------|---| | W | fizzed rapidly with almost half of the metal left after two minutes | | Х | fizzed rapidly and most of the metal had reacted after two minutes | | Υ | some fizzing and the metal looked unchanged after two minutes | | Z | fizzed very rapidly and no metal was left after two minutes | Use the observations in Table 8.1 to list the metals in order of reactivity. [2] **(b)** Fig. 8.1 shows the reactivity series of some metals. The element carbon is also included in the list. Fig. 8.1 | | 3.3. | |-----|--| | (i) | Aluminium is extracted from the ore bauxite by electrolysis. | | | Use Fig. 8.1 to state and explain how copper is extracted from copper ore. | | | | | | | | | [2 | | | (ii) | Calcium is more reactive than magnesium. | | |-----|-------|---|--------| | | | Suggest why. | | | | | | | | | | | [1] | | | (iii) | Iron objects can be protected from rusting by coating them with zinc. | | | | | This is called sacrificial protection. | | | | | Use Fig. 8.1 to explain how sacrificial protection with zinc stops iron from rusting. | | | | | | | | | | | | | | | | [2] | | (c) | Iron | is more reactive than copper. | | | | Iron | metal reacts with aqueous copper chloride, ${\rm CuC} l_2$. | | | | Iron | $_{ m I}({ m II})$ chloride is made. | | | | (i) | Construct the balanced symbol equation for this reaction. | | | | | | [2] | | | (ii) | State the name of this type of reaction. | | | | | Choose from the list. | | | | | addition
displacement
neutralisation
thermal decomposition | | | | | | [1] | | (d) | Aluı | minium is more reactive than iron but is more resistant to corrosion than iron. | | | | Exp | olain why. | | | | | | | | | | | | | | | | [2] | | | | [Tota | l: 12] | 9 Fig. 9.1 shows a skydiver before the parachute opens. | | | FIG. 9.1 | |-----|------|---| | (a) | The | skydiver has a mass of 84 kg. | | | (i) | State the name of the force labelled Q . | | | | [1] | | | (ii) | Calculate the size of the force labelled Q . | | | | The gravitational field strength $g = 10 \mathrm{N/kg}$. | | | | | | | | force Q = N [1] | (iii) The air resistance force at one point during the skydiver's journey is 760 N. Use your answer to (a)(ii) to calculate the acceleration of the skydiver when the air resistance force is 760 N. acceleration = m/s² [3] **(b)** Fig. 9.2 shows a speed–time graph for the skydiver's journey. Fig. 9.2 The parachute is opened after 140 s. Explain, in terms of motion and forces, the shape of the speed–time graph after the parachute is opened. | rom 140s to 180s | | |------------------|-----| | | | | | | | | • | | | | | | • • | | ft 400 | | | after 180s | ٠. | | | | | | | | | | | | | | [4 | 1] | | [4 | ŧ] | (c) The skydiver falls from a height of 7500 m. Show that the loss in gravitational potential energy when the skydiver reaches the ground is 6.3 MJ. The gravitational field strength $g = 10 \,\mathrm{N/kg}$. [1] [Total: 10] **10** (a) Fig. 10.1 is a diagram of part of the carbon cycle. Fig. 10.1 (i) State the name of process A in Fig. 10.1. (ii) State the balanced chemical equation for process **B** in Fig. 10.1. [2] (iii) Draw an arrow on Fig. 10.1 to represent the process of feeding. [1] (iv) State the name of the cell structure where process **C** in Fig. 10.1 occurs.[1] (b) Tick (✓) all the boxes which show factors that cause an increase in carbon dioxide concentration in the atmosphere. | A decrease in the combustion of fossil fuels. | | |---|--| | A decrease in the use of cars that use petroleum. | | | An increase in natural habitats being converted to land for intensive cattle farming. | | | An increase in land used for housing. | | | An increase in tree planting. | | | - 1 | • |) | |-----|---|---| | - 1 | _ | | | | | ٠ | | | | - | | (c) | Suggest two ways that deforestation causes extinction of animal species. | |-----|---| | | 1 | | | | | | 2 | | | | | | [2] | [Total: 9] - 11 Electrolysis is the breakdown of an ionic compound by the passage of electricity. - (a) Complete the following sentences about the products of electrolysis. Choose words from the list. electrolytes hydrogen negative neutral non-metals positive | ar | or | or | metals | ions, | solut | aqueous | of | ectrolysis | ele | During | |----------------|----|----|--------|-------|--------|---------|-----|------------|-----|--------| | electrode wher | | | | the | ode is | The and | ode | the cath | at | formed | | [3 | | | | | rmed. | are fo | | | | | - **(b)** Aqueous copper(II) sulfate can be electrolysed using copper electrodes or using carbon (graphite) electrodes. - (i) State the product formed at the **anode** when aqueous copper(II) sulfate is electrolysed using each type of electrode. (ii) Fig. 11.1 shows the change in mass at the cathode when aqueous copper(II) sulfate is electrolysed using copper electrodes. The investigation is done using different currents, each for the same length of time. Fig. 11.1 Predict the change in mass of the **anode** when the current is 0.25A. change in mass of anode = g [1] (iii) Construct the ionic half-equation for the formation of the product at the **cathode** using **carbon** (**graphite**) electrodes.[2] [Total: 8] - **12** A student is investigating electrical circuits. - (a) Fig. 12.1 shows a circuit made by the student. Fig. 12.1 (i) The ammeter in Fig. 12.1 reads 0.50A. The voltmeter in Fig. 12.1 reads 2.0 V. Calculate the resistance of the resistor labelled R in Fig. 12.1. | | resistance = Ω [3] | |------|--| | (ii) | The student notices that resistor R gets hot if the circuit is left connected for too long. | | | Describe, in terms of current, how the student prevents resistor R from overheating using the circuit shown in Fig. 12.1. | | | | | | | | | [2] | **(b)** The student replaces the 6.0 V battery with a small solar cell. The solar cell has an efficiency of 16%. Calculate the power input to the solar cell when the solar cell provides 8.0 W of power to the circuit. power input = W [2] [Total: 7] # **BLANK PAGE** # **BLANK PAGE** Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series. Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge. The Periodic Table of Elements | | II | 2 H | helium
4 | 10 | Ne | neon
20 | 18 | Ā | argon
40 | 36 | 궃 | krypton
84 | 54 | Xe | xenon
131 | 86 | R | radon
- | 118 | Og | yanesson
- | |-------|-------------|-----|---------------|---------------|--------------|------------------------------|----|----|------------------|----|----|-----------------|----|----------|------------------|-------|-------------|-----------------|----------|-----------|--------------------| | | = | | | | | | | | chlorine
35.5 | | | | | | | | | | | | ennessine og | | | <i>></i> | | | | | fluc
1 | | _ | chlo 35 | 6 | ш | broi
8 | 2 | | jo 7 | 80 | _ | asta | <u>+</u> | | | | | > | | | 80 | 0 | oxygen
16 | 16 | ഗ | sulfur
32 | 35 | Se | selenium
79 | 52 | <u>e</u> | tellurium
128 | 84 | Ро | molood
– | 116 | ^ | livermorium
- | | | > | | | 7 | Z | nitrogen
14 | 15 | ₾ | phosphorus
31 | 33 | As | arsenic
75 | 51 | Sb | antimony
122 | 83 | Ξ | bismuth
209 | 115 | Mc | moscovium
- | | | ≥ | | | 9 | O | carbon
12 | 14 | S | silicon
28 | 32 | Ge | germanium
73 | 50 | Sn | tin
119 | 82 | Pb | lead
207 | 114 | ŀΙ | flerovium
- | | | = | | | 2 | Δ | boron
11 | 13 | Αl | aluminium
27 | 31 | Ga | gallium
70 | 49 | In | indium
115 | 81 | <i>1</i> 1 | thallium
204 | 113 | R | nihonium
— | | | | | | | | | | | | 30 | Zu | zinc
65 | 48 | g | cadmium
112 | 80 | Hg | mercury
201 | 112 | S | copernicium
- | | | | | | | | | | | | 29 | Cn | copper
64 | 47 | Ag | silver
108 | 62 | Au | gold
197 | 111 | Rg | roentgenium
- | | dn | <u>.</u> | | | | | | | | | 28 | Z | nickel
59 | 46 | Pd | palladium
106 | 78 | ₹ | platinum
195 | 110 | Ds | darmstadtium
- | | Group | | | | | | | | | | 27 | ဝိ | cobalt
59 | 45 | Rh | rhodium
103 | 77 | 'n | iridium
192 | 109 | Ψ | meitnerium
– | | | | - I | hydrogen
1 | | | | | | | 56 | Fe | iron
56 | 4 | Ru | ruthenium
101 | 92 | SO | osmium
190 | 108 | Hs | hassium
- | | | | | | ı | | | | | | 25 | Mn | manganese
55 | 43 | ည | technetium
- | 75 | Re | rhenium
186 | 107 | Bh | bohrium
— | | | | | | | loc | SS | | | | 24 | ပ် | chromium
52 | 42 | Mo | molybdenum
96 | 74 | ≯ | tungsten
184 | 106 | Sg | seaborgium
- | | | | | Key | atomic number | atomic symbo | name
relative atomic mass | | | | 23 | > | vanadium
51 | 41 | q | niobium
93 | 73 | <u>n</u> | tantalum
181 | 105 | Q
O | dubnium
— | | | | | | a | atol | relat | | | | 22 | j= | titanium
48 | 40 | Zr | zirconium
91 | 72 | Ï | hafnium
178 | 104 | ¥ | rutherfordium
- | | | | | | | | | | | | 21 | Sc | scandium
45 | 39 | > | yttrium
89 | 57–71 | lanthanoids | | 89–103 | actinoids | | | | = | | | 4 | Be | beryllium
9 | 12 | Mg | magnesium
24 | 20 | Ca | calcium
40 | 38 | Š | strontium
88 | 56 | Ва | barium
137 | 88 | Ra | radium
- | | | _ | | | 3 | := | lithium
7 | 1 | Na | sodium
23 | 19 | × | potassium
39 | 37 | Rb | rubidium
85 | 55 | Cs | caesium
133 | 87 | ъ́ | francium
- | | 7.1 | Ľ | lutetium | 175 | 103 | ר | lawrencium | ı | |-----|----|--------------|-----|-----|-----------|--------------|-----| | 70 | Υp | ytterbium | 173 | 102 | 8 | nobelium | 1 | | 69 | Tm | thulium | 169 | 101 | Md | mendelevium | ı | | 89 | Щ | erbinm | 167 | 100 | Fm | ferminm | ı | | 29 | 웃 | holmium | 165 | 66 | Es | einsteinium | ı | | 99 | D | dysprosium | 163 | 86 | ర్ | californium | ı | | 65 | Тр | terbium | 159 | 97 | 益 | berkelium | ı | | 64 | Вd | gadolinium | 157 | 96 | CB | curium | ı | | 63 | En | europium | 152 | 92 | Am | americium | I | | 62 | Sm | samarium | 150 | 94 | Pn | plutonium | I | | 61 | Pm | promethium | I | 93 | ď | neptunium | I | | 09 | PZ | neodymium | 144 | 92 | \supset | uranium | 238 | | 29 | Ą | praseodymium | 141 | 91 | Ра | protactinium | 231 | | 58 | Ce | cerium | 140 | 06 | ┖ | thorium | 232 | | 57 | Га | lanthanum | 139 | 88 | Ac | actinium | ı | lanthanoids actinoids The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).